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Speciation mechanisms remain controversial. Two speciation models
occur in Israeli subterranean mole rats, genus Spalax: a regional spe-
ciation cline southward of four peripatric climatic chromosomal species
and a local, geologic-edaphic, genic, and sympatric speciation. Here
we highlight their genome evolution. The five species were sepa-
rated into five genetic clusters by single nucleotide polymorphisms,
copy number variations (CNVs), repeatome, and methylome in sym-
patry. The regional interspecific divergence correspond to Pleistocene
climatic cycles. Climate warmings caused chromosomal speciation.
Triple effective population size, Ne, declines match glacial cold cycles.
Adaptive genes evolved under positive selection to underground
stresses and to divergent climates, involving interspecies reproduc-
tive isolation. Genomic islands evolved mainly due to adaptive evo-
lution involving ancient polymorphisms. Repeatome, including both
CNV and LINE1 repetitive elements, separated the five species. Meth-
ylation in sympatry identified geologically chalk-basalt species that
differentially affect thermoregulation, hypoxia, DNA repair, P53, and
other pathways. Genome adaptive evolution highlights climatic and
geologic-edaphic stress evolution and the two speciation models,
peripatric and sympatric.

subterranean rodents | genomic sequencing | speciation models |
methylation | repeatome

The remarkable ecological adaptation of mammals to the
underground environment due to climatic change in Eocene

times, approximately 50 million years ago (Mya), is one of na-
ture’s best-studied long-term evolutionary adaptive experiments.
It involves mosaic evolution of regression, progression, and
global convergent adaptations to their common, unique subter-
ranean ecology (1). The genus Spalax (Spalacidae, Rodentia;
Fig. 1A), originated in Asia Minor and displays an outstanding
three-pronged adaptive climatic radiation into the Balkans,
Ukraine, and Near East southward to North Africa, reflected in
an increasing diploid set of chromosome numbers, from 2n = 36
in Asia Minor to 2n = 62 associated with high ecological stresses
in all three prongs (1). The divergence of chromosomes resulted
from Robertsonian chromosomal fission mutations (2, 3) and led
to a southward ecological chromosomal speciation cline of the
Spalax ehrenbergi superspecies in Israel. Ecogeographically, Spalax
chromosome sets are increasing southward toward the Negev
Desert. They are associated with extreme changes in ecological
factors (1), especially the climate of Israel from the northern
humid, cold Galilee and Golan region southward to the hot, dry
Negev Desert, representing an ecology of increasing climatic
aridity southward (SI Appendix, Table S1) (4).
Notably, Spalax has largely been known to speciate chromosomally

(5), adaptively, allopatrically (i.e., separated distantly geographically
without ongoing gene flow), or peripatrically (i.e., isolated relatively
closely in peripheral populations surrounding the main range but
without ongoing gene flow) (6), a kind of close allopatry. Spalax

galili (2n = 52) is distributed in the humid, cool Upper Galilee and
underwent further sympatric speciation (i.e., speciation in the same
homeland [patria]), with ongoing gene flow between the abutting
populations evolving into two different species due to geologic-
edaphic (soil) divergence from S. galili ancestor species on Seno-
nian (Upper Cretaceous) chalk rocks to S. galili, the derivative
species evolving on Pleistocene volcanic basalt (7–9) (Fig. 1B). S.
golani (2n = 54) inhabits the semihumid, cold northern Golan and
Mount Hermon region (Fig. 1C). Spalax carmeli (2n = 58) ranges
from the warm southern Golan to the humid and warm lower
Galilee, Mount Carmel, and Coastal Plain and down to the Yarkon
River (10) (Fig. 1C). Spalax judaei (2n = 60) occurs in the warm, dry
southern Samaria and Judea Mountains, southern coastal plain,
and northern Negev Desert (10) (Fig. 1C). Thus, the four chro-
mosomal sibling species (2n = 52, 54, 58, 60) are distributed in four
climatic regions based on a combination of temperature and
humidity (10–12). In contrast, the sole sympatric species occurs
locally in the same macroclimate but is divergent geologically
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and edaphically, living in rendzina soil on the chalk rock and in
basalt soil on the volcanic basalt rock (Fig. 1 B and C).
Narrow hybrid zones separate the abutting species, increasing

in breadth southward 320 m between 2n = 52 and 58, 725 m
between 2n = 54 and 58, and a 2,825 m hybrid zone between 2n =
58 and 60 (13), suggesting a southward speciation trend with in-
creasing chromosomal numbers, correlated with increasing aridity
(11) (Fig. 1C). This speciation trend provides evidence that the
genus Spalax speciated chromosomally (5), adaptively (e.g., cli-
matically), peripatrically (6), or sympatrically, which likely applies to
the specific microsites in which a genetic/genomic divergence has
been detected within a metapopulation with gene flow subdivided
into two contrasting ecologies, chalk abutting with basalt (Fig. 1B).
Here we compare and contrast genomically two speciation

models in Spalax. The regional, climatic, and peripatric specia-
tion model (10) of the four chromosomal species, with the local,
edaphic, sympatric speciation, within a population of S. galili,
with limited gene flow between Pleistocene basalt abutting
Senonian chalk at the “Evolution Plateau” in the eastern Upper
Galilee (7–9, 14, 15) (Fig. 1B). Chromosomal rearrangements
are widespread in animals and are thought to facilitate speciation
through rapid reproductive isolation (5, 10–12). In Spalax, such
rearrangements occurred due to postzygotic meiotic disturbances
(16), followed by prezygotic reproductive isolation, olfaction (17,
18), vocal dialects (19), and seismic communication (20). However,
the underlying adaptive genomic evolution in the correlated cli-
matic changes, and differences between peripatric and sympatric
speciation models, have remained largely unknown. We rese-
quenced population genomes and repeatomes of the four chro-
mosomal species, and the methylome of the S. galili_basalt and S.
galili_chalk to address these evolutionary questions.

Results
Population Structure and Genetic Diversity. We conducted whole
genome resequencing of five Spalax species (SI Appendix, Tables

S2–S4) and removed closely related individuals according to
relatedness (SI Appendix, Fig. S1). Notably, the individuals from
each species were clustered together, but separated from other
species (Fig. 1 D–G). Population divergence was also seen based
on single nucleotide polymorphisms (SNPs) from noncoding
genomic regions which are mirroring the coding regions
(Fig. 1F). The three Northern (N) species (S. golani, S. gali-
li_chalk, and S. galili_basalt) share more genetic variation than
the two Southern (S) species (S. carmeli, S. judaei) (SI Appendix,
Fig. S2). All of the individuals were separated into the S and N
categories when the number of putatively genetic populations, K,
was set to 2 in the structure analysis. A gradual speciation trend was
observed for S. galili and S. judaei from K = 3 to K = 4 (Fig. 1G). No
recombinants were detected by the structure analysis, indicating
that gene flow between species was limited. S. golani showed the
highest and S. judaei the lowest genetic diversity (SI Appendix,
Table S4). The second highest genetic diversity was found in S.
carmeli, followed by S. galili. These differential genetic diversities
among species may have arisen through the duration of specia-
tion and the exposure to ecological stresses (21).

Interspecies Divergence, Gene Flow, and Demographic History. The
demography and divergence of the four species were further
assessed by pairwise sequential Markovian coalescent (PSMC)
analysis (22), which suggested that the common ancestor of the
four species gave rise to two clades (S. golani-S. galili and S.
carmeli-S. judaei) between 1.2 and 1.5 Mya (Fig. 2A), as was the
case in all pregenomic analyses. In the first interglacial warming
stage (0.8 to 0.3 Mya), the Northern ancestral clade diverged into
two current species, S. golani and S. galili, in the North (Fig. 1 D
andG), whereas the second clade diverged into the two Southern
species, S. carmeli and S. judaei, in the second interglacial
warming stage (0.2 to 0.1 Mya) (Figs. 2A and 3A). These findings
suggest that climatic cycles triggered Spalax chromosomal spe-
ciation. We further detected three episodes of decline of the
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Fig. 1. The ecogeographic distribution and the genomic divergence among Spalax species in Israel. (A) Blind mole rat, Spalax. (B) Geological map of east
Upper Galilee including the Evolution plateau. (C) Ecogeographic map of species distribution (from north to south marked in different colors) and sampling
sites (red dots) of the four climatic and chromosomal peripatric species, and the fifth S. galili (2n = 52) marked in green, which diverged edaphically and
genetically from sympatric species derivative S. galili_basalt) (2n = 52) marked with a red circle and its ancestor S. galili_chalk (2n = 52) marked with a blue
circle, S. golani (2n = 54) marked in blue, S. carmeli (2n = 58) marked in violet, and S. judaei (2n = 60) marked in brown. (D) A neighbor-joining tree
reconstructed with the allele shared matrix of SNPs of the five blind mole rat species populations. The scale bar represents the p distance. (E) Genetic clusters
of the four species shown by PCA based on SNPs; only principal component 1 (26.95%) and principal component 2 (9.03%) are displayed. (F) Neighbor-joining
tree based on the SNPs in coding (right side) and noncoding (left side) genomic regions. (G) Structure analysis of the five Spalax species. The number of
putatively genetic populations (K) was defined from K = 2 to K = 5; each column (separated by white lines) denotes one individual.
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effective population size, Ne, for each of the four chromosomal
species or their ancestors. The first population decline occurred
immediately after the Eburonian glacial period in Europe, ap-
proximately 1.3 Mya (Fig. 2A). The second population decline
occurred around 300 kya, during the Saale glaciation period
(0.3∼0.20 Mya). The third population decline occurred during
the last glacial maximum (LGM), approximately 20 kya. Recent
distinct population expansions were found for the two Southern
species approximately 50 kya (Fig. 2A), corresponding to climatic
pluvial times, with enhanced rainfall and increased temperatures
during this period from 55 to 52 kya, with a peak at 54 kya (23,
24). The vegetation increase in the warm and humid pluvial
(interglacial) period (25) presumably provided sufficient food
supplies for the expanding Spalax populations.
The genetic divergence, FST, between each species pair (SI

Appendix, Table S5 and Fig. 2D) corresponds to phylogenetic
and structure analyses, with high divergences between the three
N species and the S species pair (Fig. 1 D and E). As expected,
the smallest genomic distance was between the two sympatric

species, the ancestor S. galili_chalk and the derivative S. gali-
li_basalt (FST = 0.053), and the largest interspecies genomic
distance was between S. galili and S. judaei (FST = 0.645) (Fig. 2D
and SI Appendix, Table S5), which is negatively correlated with
the width of hybrid zones between species. The hybrid zones
separating the chromosomal species are under strong natural
selection and decrease northward, from ∼2,825 m between
S. judaei and S. carmeli to ∼320 m between S. galili and S. carmeli
(11, 13, 26, 27), with strong selection against hybrids (11, 13).
Similarly, genetic relationships among the four species were
inferred by D statistics (28) (Fig. 3B), NetView P (29) (Fig. 3D),
and TreeMix (30) (Fig. 2B). The BABA-ABBA and identity-
by-descent (IBD) (Fig. 2C) tests demonstrated an extremely
limited gene flow and only a few shared haplotypes. The three-
population test (f3) can provide a clear evidence of admixture,
even if the gene flow occurred hundreds of years ago (31). We
calculated the corresponding f3 statistics (SI Appendix, Table S6)
in pairwise comparisons for the 10 possible species combinations.
A negative f3 value indicates a complex history of the tested
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target population. All f3 values and Z-scores were positive in all
of the tested combinations, suggesting that no admixture oc-
curred in the history of these species (SI Appendix, Table S6).
Gene flow did not occur, probably because of the strong climatic
adaptation of the four chromosomal species to four climatic
regions (10). Both the f3 test and the large FST suggest the cur-
rent contact of S. galili and S. carmeli is secondary (SI Appendix,
Table S6 and Fig. 2D).
Linkage disequilibrium (LD) of the four species drops rapidly,

to below 0.3 within 5 kbp (Fig. 3C). S. golani shows the lowest LD,
and S. judaei shows the highest LD, which is consistent with the
strong selection exerted by the xeric environment on S. judaei.
To evaluate alternative divergence models (nine probable

models in SI Appendix, Fig. S3) between the four chromosomal
species, we used pairwise joint site frequency spectra to perform
a composite likelihood comparison with fastsimcoal2 modeling

software. The best demographic model was selected by the
lowest delta likelihood and Akaike information criterion (32).
The best-supported model (Fig. 3A and SI Appendix, Table S7)
indicated that the common ancestor of the N bifurcatingly sep-
arated from the common ancestor of the S species approximately
1.34 Mya (95% highest posterior density [HPD] = 1.33 to 1.35
Mya) in the warm South Golan, south of the Afiq hybrid zone
(13). Importantly, a fossil Spalax, presumably S. carmeli, was found
in Ubadiyya, south of the lake of Galilee, from 1.4 Mya (33). The
other bifurcation branched westward, producing S. galili from S.
golani approximately 492.4 kya (95% HPD = 492.1 to 492.7 kya) in
upper Galilee. After splitting from S. golani, S. carmeli speciated to
S. judaei southward more recently, 184.1 kya (95% HPD = 184.2 to
183.9 kya). These datings are fully compatible with those obtained
from PSMC results (Fig. 2A). No relatedness between S. galili and
S. carmeli was detected by the network analysis (Fig. 3D), but both
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of these species were found to be related to S. golani, suggesting an
ancestral state.

Selective Sweep in the Five Spalax Species. To explore the adaptive
evolution of the four chromosomal species, we conducted di tests
to look for genes with high interspecific divergence and under
positive selection driven by ecological stresses. Among 24,636
genes analyzed, a total of 1,256 genes were identified as evolving
under selection (i.e., putatively selected genes [PSGs]) (SI Ap-
pendix, Fig. S4). This 5.09% of PSGs is plausible in view of the
severe underground stresses, including darkness, hypoxia, hy-
percapnia, energetics, and pathogenicity (1, 10). We found 507
and 552 PSGs that were shared between the S and N species
pairs, respectively. Furthermore, 365 genes were selected and
shared in the four chromosomal species. Presumably, in each
species, the same PSGs are involved in the adaptation to the
same stresses that are characteristic of the underground lifestyle,
such as hypoxia, hypercapnia, and darkness (SI Appendix, Fig. S4
and Dataset S1); however, there are also species-specific PSGs in
each of the four chromosomal species that are likely involved in
their unique adaptation to the divergent climates (SI Appendix,
Fig. S4). Furthermore, the blind mole rat is a cancer-resistant
animal (34, 35), conceivably linked with hypoxia resistance, that
potentially could transform cancer resistance in medicine.
BCL7B, a member of the BCL7 gene family, is a tumor sup-
pressor in humans (36) and is one PSG detected in all four
Spalax species. Thus, the positive selection of BCL7B is consis-
tent with the cancer resistance of this subterranean mammal,
mediated by a concerted necrotic cell death mechanism (34).
The tumor suppressor candidate 2 (Tusc2) was identified as a
PSG in S. galili. It has been reported that ectopic expression of
the TUSC2 3′-UTR inhibits cell proliferation, survival, migra-
tion, invasion, and colony formation and furthermore causes
tumor cell death in humans (37). This gene was selected only in
S. galili, probably because this species lives in a more hypoxic
region, due to the much stronger winter rains in the northern
Israel compared with southern Israel. Another gene, F8, coag-
ulation factor VIII, which belongs to a group of proteins that are
essential for the formation of blood clots, was positively selected
in S. galili and S. golani, possibly because the aggression between
individuals in populations of these species is stronger than that in
the populations of S. carmeli and S. judaei (38). The F8 gene
product might be involved in keeping the animals from bleeding
and promoting accelerated wound healing after fighting (39,
40). Hspa14, a heat shock protein family A (Hsp70) member,
was also positively selected in S. judaei species, which extends to
the hot, dry northern Negev Desert. Hspa14 is down-regulated
during heat stress, which could lower the rate of translation by
slowing the release of properly folded proteins from the ribo-
some. Thus, it would contribute to the reduction of the protein
synthesis burden during heat stress (41) in the hot and dry
northern Negev Desert, where food resources for the blind
mole rats are limited.
Reproductive isolation is necessary for speciation. In the

current study, a number of genes related to male fertility and
reproduction, including Sox8, Spag5, Spata2l, Tex264, Tex28, and
Tex38, were found to be positively selected in the four chromo-
somal species. Sox8 is a critical regulator of adult Sertoli cell
function and male fertility (42). SPATA2 is highly expressed in
Sertoli cells of the adult mouse testis, and deletion of this gene
attenuates fertility in male mice (43). These genes are potentially
important for the blind mole rat adaptation and speciation un-
derground (Dataset S1).

Genome Islands of Divergence between Species Pairs. The diver-
gence of each population pair along the genome is highly het-
erogeneous (Fig. 4 A–J), and most of them are small, with size of

10 kb (SI Appendix, Fig. S5). The number of shared islands
among the 10 population pairs ranged from 24 to 260 (Fig. 4L
and SI Appendix, Table S9). Significantly elevated dxy (Fig. 4 K
and M) and LD (Fig. 4O) values were detected within FST_is-
lands of all of the 10 population pairs (Fig. 4M and SI Appendix,
Table S8), which is consistent with a model in which the island
regions were derived from divergent sorting of adaptive evolu-
tion and ancient polymorphisms (44, 45). The genetic diversity
(π) and population-scaled recombination rates were significantly
lower in island regions (Fig. 4 N and P and SI Appendix, Table
S8) compared with the backgrounds in all species pairs. Most of
the Tajima’s D values are strongly negative within genomic is-
lands, indicating an excess of low-frequency variants (SI Appen-
dix, Table S8). The shared islands between different populations
pairs (Fig. 4L and SI Appendix, Table S9) suggest that they were
apparently formed before the species split (44). Although the
S. carmeli vs. S. judaei population pair displays the largest number
of divergence islands, it shares the smallest number with all of the
other pairs, suggesting the uniqueness of recent adaptive evolution
to the drought and heat in southern Israel. The N and S clades
diverged earliest, and the shared islands between them are probably
from ancestry. This is also true between S. carmeli vs. S. judaei and
between S. galili_basalt vs. S. galili_chalk.
Gene flow was mainly restricted between the peripatric chro-

mosomal population pairs, and only slightly between the sym-
patric pair (Fig. 2B). However, there is no obvious difference in
number of islands between them (SI Appendix, Table S10),
suggesting that recent gene flow was not the major factor shaping
the genomic islands (44). Gene Ontology (GO) enrichment of
genes from islands (Fig. 5 A–E) shows that the comparison of S.
galili_chalk and S. galili_basalt is related to angiogenesis, cancer,
and autophagy (Fig. 5D and Dataset S2), and that between S.
carmeli and S. judaei is related to water homeostasis, autophagy,
and neurogenetics (Fig. 5E and Dataset S3).

Copy Number Variations and Repeatome.
Differences in copy number variations (CNV). CNV regions (CNVRs)
varied among the species and showed four clusters by principal
component analysis (PCA) (Fig. 6A and SI Appendix, Fig. S6),
phylogenetic tree analysis (Fig. 6B), and heatmap analysis (Fig.
6C). S. carmeli harbored the largest number of CNVRs (2,873),
followed by S. golani (2,209), S. galili_basalt (1,911), S. galili_chalk
(1,761), and S. judaei (1,525). This was the same order of the total
length of CNVRs, number of average CNVRs, species-unique
CNVRs, and loss of CNVRs for these species (SI Appendix, Figs.
S7, S8, and S10B and Tables S11–S14, S16). Most of the CNVRs
were distributed in intergenic regions (SI Appendix, Table S15 and
Fig. S9). We observed that the larger the effective population size,
the greater the CNV (46).
The VST was used to estimate population differentiation,

which is similar to FST, ranges from 0 to 1. VSTof all of the species
pairs (SI Appendix, Figs. S10A and S11) showed the same trend
as for FST, suggesting the same selection trend on different
mutations. In some species population pairs, one-half of the
VST values were extremely high, >0.5 (Dataset S4). Most of
the genes with high VST values in pairwise species comparisons are
known to occur in gene clusters and are related to digestion and
metabolism, reproductive isolation, and local inflammatory
reactions (47).
Significant differences were detected in the number of CNV

calls between different species. The lowest CNV was found in S.
judaei (SI Appendix, Fig. S10B and Table S14), which might
optimize energetic balance given that this is the species with the
lowest metabolic rate (48). However, a complementary expla-
nation could be the reduced power to detect smaller CNVs and
precise breakpoints in samples with a lower read depth (49). We
found 332 CNVRs that overlapped with large segmental
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duplications and 6,182 CNVRs that did not overlap with large
segmental duplications (SI Appendix, Fig. S10C). The length dis-
tribution of CNV that overlapped with genes is different between
the two kinds of CNVs (SI Appendix, Fig. S10D).

KEGG pathway enrichment analysis of CNV genes showed
that CNV genes in xeric S. judaei were enriched in digestion,
neurogenetics, and immunobiology (SI Appendix, Table S17).
These are related to neurology (50), immunology (51), metabolism

A

B
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D

E

F

G

H

I

J

K

L

M

N

O

P

Fig. 4. Genome divergence between the sympatric and peripatric species. (A) FST of the sympatric species pair. (B–J) FST of the peripatric species pairs. (K)
Absolute divergence (dxy) of all linage pairs. (L) Number of shared islands between all of the linages. (M) FST and dxy, (N) Genetic diversity, (O) LD, and (P)
recombination rate within islands and its backgrounds.
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(52), and pathology (47), optimizing a network of adaptations to
xeric hot stressful ecologies (4), where S. judaei is distributed.
Our analysis of genomic repetitive elements in Spalax species

(see SI Appendix,Materials and Methods) revealed that the abundance

of repetitive elements in genomes of the studied animals separates
them into four clusters corresponding to the four chromosomal
peripatric species (SI Appendix, Fig. S15 A and B). In addition,
phylogenetic analysis based on the abundance of repetitive elements
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S. carmeli vs. S. judaei

S. carmeli vs. S. golani
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D
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Fig. 5. GO of genes within islands and differential methylated regions. (A–E) GO of genes from islands of species pair (A) S. golani and S. galili_chalk, (B) S.
golani and S. galili_basalt, (C) S. carmeli and S. golani, (D) S. galili_basalt and S. galili_chalk, and (E) S. carmeli and S. judaei. (F) Differential methylated genes
between S. galili_basalt and S. galili_chalk within relevant pathways.
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taken as a continuous measurement yielded a similar separation of animals
into four chromosomal Spalax species (SI Appendix, Fig. S15C andD).
We studied differential mutations in repetitive elements across

all pairs of studied Spalax species (SI Appendix, Materials and

Methods) and found genomic positions in the LINE1 loci that
have species-distinctive substitutions in several Spalax species (SI
Appendix, Table S22 ). Polymorphisms of the repetitive elements,
as well as their abundances in the genomes, are known to play
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important roles in the adaptation of organisms to their envi-
ronment (53). The most prominent species-distinctive substitu-
tions are located in an island of mutations of the LINE-1 loci
that is differentiating between the S. judaei species and all other
Spalax species (Fig. 6D, SI Appendix, Table S22 ), possibly
highlighting a genomic response to high coccid pathology (47)
and other pathogens prevalent in xeric environments. The island
of mutations that differentiates the S. judaei species from all
other Spalax species matches human LINE1 genomic locus
known to be important for transposition (54).
Epigenetic differences precede and accompany in sympatric speciation.
Epigenetic differences in DNA methylation patterns expand the
toolbox of adaptation. As expected for mammalian genomes, after
mapping (SI Appendix, Table S18), methylated Cs mainly occurred
in a CpG context (69.3 to 77.5%), whereas of all methylated Cs,
only 0.3% were in a CHG context and 0.3 to 0.6% were in a CHH
context) (C, cytosine; mC, methylated cytosine; in CHH and CHG,
H stands for A, T, or C) (55, 56). Significantly differentially
methylated CpGs (Fisher’s exact test) were clustered, and differ-
entially methylated regions (DMRs) were calculated by comparing
the two sympatric species, S. galili_chalk and S. galili_basalt. Because
promoter methylation has a main regulatory function, we focused
on DMRs within promoters with strong methylation differences
above 30% between chalk and basalt animals. We detected 129
DMRs, of which 43 were hypomethylated and 86 were hyper-
methylated in the S. galili_basalt (SI Appendix, Table S19). Of the
129 promoter DMRs, 114 were overlapping with genes, and 8
were still uncharacterized. The set of genes was incorporated
into STRING for gene pathway analysis, enriched GO terms
were identified, and relevant gene networks were analyzed (SI
Appendix, Figs. S13 and S14 and Table S20). Compared with S.
galili_basalt, S. galili_chalk is less methylated in liver in gene
promoters, including genes important for acetylation, indicating
greater gene activation, as both promoter hypomethylation and
acetylation are reflective of gene activation status (SI Appendix,
Table S20 and Figs. S13 and S14). In addition, DMRs were
detected in genes involved in pathways relevant in hypoxia, hy-
percapnia, thermoregulation, DNA repair, cancer resistance,
P53 pathways (Fig. 5F), heat shock proteins, and olfactory and
taste receptors, and these genes also showed different expression
levels in our previous study (9). This indicates a systemic function
of these genes in response to differences in climate and edaphic
factors due to their regulation in both liver and brain (9). In speciation
processes, DNA methylation may act as a rapid adaptive mechanism
of genomic regulation for initializing, compensating, supporting, or
causing species divergence.

Discussion
Genome analysis has highlighted adaptive evolution and speci-
ation of the four regional peripatric chromosomal species (1–3,
7–10) and the fifth local sympatric genic species of S. galili on
basalt (7–9). All are good biological species adapted to climate
or soil, respectively, despite narrow interspecies hybridization,
where hybrids were strongly selected against (11). Regional
Pleistocene chromosomal speciation events were associated with
repeated climatic warmings (interglacial cycles, or pluvial high
rainfall periods in the Near East), followed by three population
size declines occurring during cold and dry glacial cycles (Fig. 2A).
The divergent time estimated by whole genome sequencing (Figs.
2A and 3A) is similar to that of DNA-DNA hybridization, high-
lighting the initiation evolution of the S. ehrenbergi superspecies in
Israel approximately 1.6 ± 0.3 Mya (57), apparently within the
range of the genomic estimate, which is 1.34 Mya. No gene flow
was found due to strong divergent climatic adaptation (10) irre-
spective of the interspecific hybrid zones (13) (Fig. 2B). General
and species-unique cancer resistant genes complemented
earlier-identified mechanisms mediating concerted necrotic cell
death (34), associated with underground hypoxia-resistant genes.

Remarkably, the VST of all species pairs (SI Appendix, Figs. S10A
and S11) showed the same trend as FST on differential mutations
(Dataset S2), i.e., adaptive evolution.
Most genes with high VST values occur in adaptive, speciation,

and regulatory gene clusters related to metabolism, reproductive
isolation (18–20), and inflammation (47). Generally, VST is much
larger in Spalax than in mice (46), probably because of adaption
to the high stresses of life underground. Repeatome selection
of CNV and functional enrichment in xeric S. judaei occurred in
genes rich in metabolism (52), neurogenesis (50), immunobi-
ology (51), inflammation, and pathology, adaptive to xeric
ecology.
The small number of islands shared among different population

pairs is unlikely related solely to intrinsic genome characteristics,
such as recombination rate, which is conserved between inde-
pendent comparisons (44). This suggests the possible existence of
divergence hitchhiking or background selection and/or adaptive
recurrent selective sweeps. However, selection could lead to ele-
vated FST but unchanged or decreased dxy. Divergence hitchhiking
may allow for the significantly lower recombination rate and
higher dxy of genomic islands, as sorting of adaptive evolution and
ancient polymorphisms would reduce gene exchange in the sur-
rounding divergent selected regions (58).
We began this paper by stating that the concepts of species

and speciation modes are still contentious. Clearly, there are
different kinds of species and different mechanisms of specia-
tion. The species and speciation concepts must be broadened to
accommodate many species types and mechanisms in nature.
Nature’s imaginative diversity creativity is not restricted only to
within-species protein and DNA/RNA polymorphisms, but abounds
in interspecies diversity in origin, structure, and evolution. The
basic as-yet unresolved issue in the modes of speciation is be-
tween allopatric and sympatric speciation (59). Clearly, as Spalax
exemplifies, species diversity largely matches ecological diversity
in nature, both regionally and locally, climatically and edaphi-
cally, respectively. Moreover, we have demonstrated in our
Evolution Canyon (60) and Evolution Plateau (7–9, 14, 15)
models, a microclimatic interslope and geological-edaphic model,
respectively, hot spots of sympatric speciation across life from
bacteria to mammals. Since geological, edaphic, climatic, abiotic,
and biotic contrasts in microsites abound globally, sympatric spe-
ciation might be a common speciation model in which selection
overrules gene flow homogenization (61).

Materials and Methods
Pair-end sequencing was performed with an Illumina NovaSeq sequencing
system. Clean reads were mapped against the reference genome using BWA,
and SNPs were called by GATK. Phylogenetic tree, PCA, and structure were
carried out using TreeBeST, GCTA, and frappe, respectively. FST and Tajima’s
D were calculated by VCFtools. Fluctuations in effective population size
were calculated by PSMC, gene flow was assessed by Treemix, f3 and
D-statistics were calculated using AdmixTools. LD was calculated by
PopLDdecay. IBD was estimated by Beagle. Gene enrichment was con-
ducted by Metascape. CNV was called by CNVnator. Recombination rate was
calculated by fastEPRR. Species divergence pattern and time were estimated by
fastsimcoal2. Detailed information is available in SI Appendix, Materials
and Methods.

Data Availability. Sequence Read Archive data have been deposited in China
National Center for Bioinformation-National Genomics Data Center (acces-
sion numbers CRA003292 and CRA003332). All study data are included in the
main text and SI Appendix.
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